Segmentation of lath-shaped bainite in multiphase steels
Multiphase steel sample
Multiphase steel sample
- Samples of a multiphase steel with polygonal ferrite, bainite and carbon-rich second phases
- Preparation and contrasting with nital etching
- Images were taken under a light microscope (LM) and scanning electron microscope (SEM)
Task definition:
- Development of an segmentation routine for lath-shaped bainite
Realization:
Use of Deep Learning (semantic segmentation)
Including ML models with data sets from light microscope and scanning electron microscope images
On the base of correlative microscopy (LM/SEM and electron backscatter diffraction) for objective ground truth
Results:
Very good model performance for LM and SEM images (pixel accuracy, intersection over union)
Low deviations of the phase components (1-2%)
Good segmentation even with new, unseen images
DL segmentation of lath-shaped bainite– LiMi
DL segmentation of lath-shaped bainite – SEM
Areas of application:
- Automated, objective and reproducible recording of the lath-shaped bainite
- Microstructure analysis as a basis for process-structure-property correlations
Partners for cooperation:
- Fraunhofer Institut für Werkstoffmechanik, Freiburg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh
- Aktien-Gesellschaft der Dillinger Hüttenwerke, Dillingen/Saar
References:
- A.R. Durmaz, M. Müller, B. Lei, A. Thomas, D. Britz, E.A. Holm, C. Eberl, F. Mücklich, P. Gumbsch, A deep learning approach for complex microstructure inference, Nat. Commun. 12 (2021) 1–15. Link to study
Contact
Dr.-Ing. Dominik Britz
Deputy Head MECS Saarbrücken
Adrian Thome, M.Sc.
Chief Operating Officer
You are interested in working with us?
Feel free to contact us! We look forward to talking to you and finding out how we can help you with your project.